Boosted trees are a powerful machine learning algorithm used in data science for classification and regression tasks. Boosted trees are an ensemble method, which means they combine the predictions of multiple individual decision trees to improve the overall accuracy and generalization performance of the model. Boosted trees work by iteratively adding decision trees to the model, with each new tree trained to correct the errors of the previous trees. The output of the final model is the weighted sum of the predictions of all the individual decision trees. The weights are determined based on the performance of each tree on the training data. One of the key advantages of boosted trees is their ability to handle complex and high-dimensional data. Boosted trees can automatically learn nonlinear relationships between the input features and the target variable, and can handle a wide range of data types, including categorical, ordinal, and continuous data. Boosted trees also have several...